Fundamental Concepts on Organic Chemistry: Part 2

1. Write down IUPAC nomenclatures of below mentioned alcohols

(a) OH (b) OH (c) OH (d) OH (d)
$$CH_2OH$$
 (e) CH_2OH (f) CH_2OH (g) OH (h) CH_3 (i) CH_3 (j) CH_3 (i) CH_3 (ii) CH_3 (j) CH_3 (iii) CH_3 (iii) CH_3 (iii) CH_3 (iiii) CH_3 (iiii) CH_3 (iv) CH_3 (iv) CH_3 (iv) CH_3 (iv) CH_3 (iv) CH_3 (iv) CH_3 (vi) CH_3 (vi) CH_3 (vii) CH_3 (viii) CH_3 (viii)

2. Write down common names of below mentioned alcohols

(i)
$$OH$$
 (ii) OH (iii) OH (i

3. What are important structural differences between methanol and phenol. 4. Mention the hybridization of each carbon and oxygen in prop-1-ene-ol and phenol.

5. Fill in the blanks

Entry	Structure	Common name (if	IUPAC name
	94	any)	
1.	Tal. Pa	Formaldehyde	064
2.	lea .	Acetaldehyde	
3		Benzaldehyde	
4		Acetone	
5.	H_3C CH_3		

6.	$H_2C = C$ CH_3		
7.	H ₂ C CH ₃		1-phenylethanone
8.			diphenylmethanone
9.		o-Tolualdehyde	
10.	13	LIYA	2-methylpropanal
	0.		17/2
11.	4		3-methylbutan-2-one
12.	0	cyclopentanone	cyclopentanone
13.		4- hydroxycyclohexanone	4-hydroxycyclohexanone
14.	0= =0		
15.	0		H) 🐉 /
16.	H ₃ C—Br	H	Tage /
17.	al, Rea	World Ha	4-hydroxybutanal
18.		W O I LO	4-hydroxy-2-butanone
19.			1,5-dihydroxy-3-pentanone
20.			4-pentene-2-one

6. Predict all molecules.

- (a) You have been given a butane molecule. If one hydrogen (terminal) of butane is replaced with
- (i) -CHO group, (ii) -OH, (iii) -COOH, (iv) -Cl respectively which type of new molecules will form. Give IUPAC name of each new compound.
- (b) How can you introduce a keto functional group in butane molecule. Justify
- © If you want to incorporate a double bond in butane molecule how will you adjust hydrogen atoms. (d) Is it possible to incorporate a triple bond? Adjust hydrogen atoms accordingly.

7. Name or draw out the following molecules:

(a) 4,4-dimethyl-2-pentyne,	(b) 4-Penten-1-yne	(c) 1-ethyl-3-dimethylnonyne
(d) OH	(e) OH	(f) CI
(g)	(h)	(i)
H ₃ C H	H ₃ C H	H ₃ C H
(j) pentanedial	(k) butanedial	(1) 2,4-pentanedione

All the best